The Dual Brunn-minkowski Theory for Bounded Borel Sets: Dual Affine Quermassintegrals and Inequalities
نویسنده
چکیده
This paper develops a significant extension of E. Lutwak’s dual Brunn-Minkowski theory, originally applicable only to star-shaped sets, to the class of bounded Borel sets. The focus is on expressions and inequalities involving chord-power integrals, random simplex integrals, and dual affine quermassintegrals. New inequalities obtained include those of isoperimetric and Brunn-Minkowski type. A new generalization of the well-known Busemann intersection inequality is also proved. Particular attention is given to precise equality conditions, which require results stating that a bounded Borel set, almost all of whose sections of a fixed dimension are essentially convex, is itself essentially convex.
منابع مشابه
Star Valuations and Dual Mixed Volumes
Since its creation by Brunn and Minkowski, what has become known as the Brunn Minkowski theory has provided powerful machinery to solve a broad variety of inverse problems with stereological data. The machinery of the Brunn Minkowski theory includes mixed volumes (of Minkowski), symmetrization techniques (such as those of Steiner and Blaschke), isoperimetric inequalities (such as the Brunn Mink...
متن کاملOn the Orlicz-Brunn-Minkowski theory
Recently, Gardner, Hug and Weil developed an Orlicz-Brunn1 Minkowski theory. Following this, in the paper we further consider the 2 Orlicz-Brunn-Minkowski theory. The fundamental notions of mixed quer3 massintegrals, mixed p-quermassintegrals and inequalities are extended to 4 an Orlicz setting. Inequalities of Orlicz Minkowski and Brunn-Minkowski 5 type for Orlicz mixed quermassintegrals are o...
متن کاملResearch Training Network “ Phenomena in High Dimension ” EDUCATIONAL WORKSHOP ON GEOMETRIC INEQUALITIES In honour of the 65 th birthday
S OF MAIN LECTURES Richard. J. GARDNER (Western Washington Univ.,U.S.A ) The dual Brunn-Minkowski theory and some of its inequalities As the title suggests, the focus of the talk is the dual Brunn-Minkowski theory, initiated by Erwin Lutwak in 1975, and developed since by him and others. First, an elementary introduction is provided to the basics, dual mixed volumes of star bodies, the dual Ale...
متن کاملInequalities for dual quermassintegrals of mixed intersection bodies
In this paper, we first introduce a new concept of dual quermassintegral sum function of two star bodies and establish Minkowski's type inequality for dual quermassintegral sum of mixed intersection bodies, which is a general form of the Minkowski inequality for mixed intersection bodies. Then, we give the Aleksandrov– Fenchel inequality and the Brunn–Minkowski inequality for mixed intersection...
متن کاملVolume Inequalities and Additive Maps of Convex Bodies
Analogs of the classical inequalities from the Brunn Minkowski Theory for rotation intertwining additive maps of convex bodies are developed. We also prove analogs of inequalities from the dual Brunn Minkowski Theory for intertwining additive maps of star bodies. These inequalities provide generalizations of results for projection and intersection bodies. As a corollary we obtain a new Brunn Mi...
متن کامل